Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Growth, senescence and water use efficiency of spring oilseed rape (Brassica napus L. cv. Mozart) grown in a factorial combination of nitrogen supply and elevated CO2

Identifieur interne : 000057 ( PascalFrancis/Corpus ); précédent : 000056; suivant : 000058

Growth, senescence and water use efficiency of spring oilseed rape (Brassica napus L. cv. Mozart) grown in a factorial combination of nitrogen supply and elevated CO2

Auteurs : J. Franzaring ; S. Weller ; I. Schmid ; A. Fangmeier

Source :

RBID : Pascal:11-0321670

Descripteurs français

English descriptors

Abstract

Atmospheric CO2 enrichment is expected to affect the resource use efficiency of C3 plants with respect to water, nutrients and light in an interactive manner. The responses of oilseed rape (OSR) to elevated CO2 have not much been addressed. Since the crop has low nitrogen use efficiency, the interactive effects of CO2 enrichment and nitrogen supply deserve particular attention. Spring OSR was grown in climate chambers simulating the seasonal increments of day length and temperature in South-Western Germany. Three levels of N fertilisation representing 75,150 and 225 kg ha-1 and two CO2 concentrations (380 and 550 μmol mol-1) were used to investigate changes in source-sink relationships, plant development and senescence, water use efficiency of the dry matter production (WUEprod.), allocation patterns to different fractions, growth, yield and seed oil contents. Seven harvests were performed between 72 and 142 days after sowing (DAS). Overall, plant performance in the chambers was comparable to the development under field conditions. While CO2 responses were small in the plants receiving lowest N-levels, several significant N × CO2 interactions were observed in the other treatments. Increasing the N availability resulted in longer flowering windows, which were furthermore extended at elevated CO2 concentrations. Nevertheless, significantly less biomass was allocated to reproductive structures under elevated CO2, while the vegetative C-storing organs continued to grow. At the final harvest shoot mass of the CO2 exposed plants had increased by 9, 8 and 15% in the low, medium and high N treatments. Root growth was increased even more by 17, 43 and 33%, respectively and WUEprod. increased by 23, 42 and 35%. At the same time, seed oil contents were significantly reduced by CO2 enrichment in the treatments with ample N supply. Obviously, under high N-supply, the CO2 fertilisation induced exaggerated growth of vegetative tissues at the expense of reproductive structures. The interruption of source-sink relationships stimulated the formation of side shoots and flowers (branching out). While direct effects of elevated CO2 on flowering can be excluded, we assume that the increased growth under high N and CO2 supply created nutrient imbalances which hence affected flowering and seed set. Nevertheless, the final seed macronutrient concentrations were slightly increased by elevated CO2, indicating that remobilisation of nutrients from the sources (leaves) to the sinks (seeds) remained effective. These findings were supported by the lower nitrogen concentrations in senescing leaves and probably increased N remobilisation to other plant parts under elevated concentrations of CO2. All the same, CO2 enrichment caused a decline in seed oil contents, which may translate into a reduced crop quality.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0098-8472
A02 01      @0 EEBODM
A03   1    @0 Environ. exp. bot.
A05       @2 72
A06       @2 2
A08 01  1  ENG  @1 Growth, senescence and water use efficiency of spring oilseed rape (Brassica napus L. cv. Mozart) grown in a factorial combination of nitrogen supply and elevated CO2
A11 01  1    @1 FRANZARING (J.)
A11 02  1    @1 WELLER (S.)
A11 03  1    @1 SCHMID (I.)
A11 04  1    @1 FANGMEIER (A.)
A14 01      @1 Universität Hohenheim, Institut für Landschafts- und Pflanzenökologie (320), FG. Pflanzenökologie und Ökotoxikologie, Ökologiezentrum 2, August-von-Hartmann-Str. 3 @2 70599 Stuttgart @3 DEU @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut.
A20       @1 284-296
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 9462 @5 354000192207150230
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 1 p.3/4
A47 01  1    @0 11-0321670
A60       @1 P @3 PR
A61       @0 A
A64 01  1    @0 Environmental and experimental botany
A66 01      @0 NLD
C01 01    ENG  @0 Atmospheric CO2 enrichment is expected to affect the resource use efficiency of C3 plants with respect to water, nutrients and light in an interactive manner. The responses of oilseed rape (OSR) to elevated CO2 have not much been addressed. Since the crop has low nitrogen use efficiency, the interactive effects of CO2 enrichment and nitrogen supply deserve particular attention. Spring OSR was grown in climate chambers simulating the seasonal increments of day length and temperature in South-Western Germany. Three levels of N fertilisation representing 75,150 and 225 kg ha-1 and two CO2 concentrations (380 and 550 μmol mol-1) were used to investigate changes in source-sink relationships, plant development and senescence, water use efficiency of the dry matter production (WUEprod.), allocation patterns to different fractions, growth, yield and seed oil contents. Seven harvests were performed between 72 and 142 days after sowing (DAS). Overall, plant performance in the chambers was comparable to the development under field conditions. While CO2 responses were small in the plants receiving lowest N-levels, several significant N × CO2 interactions were observed in the other treatments. Increasing the N availability resulted in longer flowering windows, which were furthermore extended at elevated CO2 concentrations. Nevertheless, significantly less biomass was allocated to reproductive structures under elevated CO2, while the vegetative C-storing organs continued to grow. At the final harvest shoot mass of the CO2 exposed plants had increased by 9, 8 and 15% in the low, medium and high N treatments. Root growth was increased even more by 17, 43 and 33%, respectively and WUEprod. increased by 23, 42 and 35%. At the same time, seed oil contents were significantly reduced by CO2 enrichment in the treatments with ample N supply. Obviously, under high N-supply, the CO2 fertilisation induced exaggerated growth of vegetative tissues at the expense of reproductive structures. The interruption of source-sink relationships stimulated the formation of side shoots and flowers (branching out). While direct effects of elevated CO2 on flowering can be excluded, we assume that the increased growth under high N and CO2 supply created nutrient imbalances which hence affected flowering and seed set. Nevertheless, the final seed macronutrient concentrations were slightly increased by elevated CO2, indicating that remobilisation of nutrients from the sources (leaves) to the sinks (seeds) remained effective. These findings were supported by the lower nitrogen concentrations in senescing leaves and probably increased N remobilisation to other plant parts under elevated concentrations of CO2. All the same, CO2 enrichment caused a decline in seed oil contents, which may translate into a reduced crop quality.
C02 01  X    @0 002A10H05
C03 01  X  FRE  @0 Sénescence @5 01
C03 01  X  ENG  @0 Senescence @5 01
C03 01  X  SPA  @0 Senescencia @5 01
C03 02  X  FRE  @0 Efficacité utilisation eau @5 02
C03 02  X  ENG  @0 Water use efficiency @5 02
C03 02  X  SPA  @0 Eficacia utilización agua @5 02
C03 03  X  FRE  @0 Fertilisation azotée @5 03
C03 03  X  ENG  @0 Nitrogen fertilization @5 03
C03 03  X  SPA  @0 Fertilización nitrogenada @5 03
C03 04  X  FRE  @0 Augmentation @5 04
C03 04  X  ENG  @0 Increase @5 04
C03 04  X  SPA  @0 Aumentación @5 04
C03 05  X  FRE  @0 Enrichissement chimique @5 05
C03 05  X  ENG  @0 Chemical enrichment @5 05
C03 05  X  SPA  @0 Enriquecimiento químico @5 05
C03 06  X  FRE  @0 Relation source puits @5 06
C03 06  X  ENG  @0 Source sink relationship @5 06
C03 06  X  SPA  @0 Relación fuente sumidero @5 06
C03 07  X  FRE  @0 Floraison @5 07
C03 07  X  ENG  @0 Flowering @5 07
C03 07  X  SPA  @0 Floración @5 07
C03 08  X  FRE  @0 Ramification @5 08
C03 08  X  ENG  @0 Branching @5 08
C03 08  X  SPA  @0 Ramificación @5 08
C03 09  X  FRE  @0 Teneur huile @5 09
C03 09  X  ENG  @0 Oil content @5 09
C03 09  X  SPA  @0 Contenido aceite @5 09
C03 10  X  FRE  @0 Brassica napus var. oleifera @2 NS @5 10
C03 10  X  ENG  @0 Brassica napus var. oleifera @2 NS @5 10
C03 10  X  SPA  @0 Brassica napus var. oleifera @2 NS @5 10
C03 11  X  FRE  @0 Dioxyde de carbone @2 NK @2 FX @5 15
C03 11  X  ENG  @0 Carbon dioxide @2 NK @2 FX @5 15
C03 11  X  SPA  @0 Carbono dióxido @2 NK @2 FX @5 15
C03 12  X  FRE  @0 Graine @5 28
C03 12  X  ENG  @0 Seeds @5 28
C03 12  X  SPA  @0 Semillas @5 28
C03 13  X  FRE  @0 Nutriment @5 29
C03 13  X  ENG  @0 Nutrient @5 29
C03 13  X  SPA  @0 Nutriente @5 29
C03 14  X  FRE  @0 Botanique @5 30
C03 14  X  ENG  @0 Botany @5 30
C03 14  X  SPA  @0 Botánica @5 30
C03 15  X  FRE  @0 <<>> @4 INC @5 68
C03 16  X  FRE  @0 Ecologie végétale @4 CD @5 96
C03 16  X  ENG  @0 Plant ecology @4 CD @5 96
C03 16  X  SPA  @0 Ecología vegetal @4 CD @5 96
C07 01  X  FRE  @0 Cruciferae @2 NS
C07 01  X  ENG  @0 Cruciferae @2 NS
C07 01  X  SPA  @0 Cruciferae @2 NS
C07 02  X  FRE  @0 Dicotyledones @2 NS
C07 02  X  ENG  @0 Dicotyledones @2 NS
C07 02  X  SPA  @0 Dicotyledones @2 NS
C07 03  X  FRE  @0 Angiospermae @2 NS
C07 03  X  ENG  @0 Angiospermae @2 NS
C07 03  X  SPA  @0 Angiospermae @2 NS
C07 04  X  FRE  @0 Spermatophyta @2 NS
C07 04  X  ENG  @0 Spermatophyta @2 NS
C07 04  X  SPA  @0 Spermatophyta @2 NS
C07 05  X  FRE  @0 Plante oléagineuse @5 31
C07 05  X  ENG  @0 Oil plant (vegetal) @5 31
C07 05  X  SPA  @0 Planta oleaginosa @5 31
N21       @1 220
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 11-0321670 INIST
ET : Growth, senescence and water use efficiency of spring oilseed rape (Brassica napus L. cv. Mozart) grown in a factorial combination of nitrogen supply and elevated CO2
AU : FRANZARING (J.); WELLER (S.); SCHMID (I.); FANGMEIER (A.)
AF : Universität Hohenheim, Institut für Landschafts- und Pflanzenökologie (320), FG. Pflanzenökologie und Ökotoxikologie, Ökologiezentrum 2, August-von-Hartmann-Str. 3/70599 Stuttgart/Allemagne (1 aut., 2 aut., 3 aut., 4 aut.)
DT : Publication en série; Papier de recherche; Niveau analytique
SO : Environmental and experimental botany; ISSN 0098-8472; Coden EEBODM; Pays-Bas; Da. 2011; Vol. 72; No. 2; Pp. 284-296; Bibl. 1 p.3/4
LA : Anglais
EA : Atmospheric CO2 enrichment is expected to affect the resource use efficiency of C3 plants with respect to water, nutrients and light in an interactive manner. The responses of oilseed rape (OSR) to elevated CO2 have not much been addressed. Since the crop has low nitrogen use efficiency, the interactive effects of CO2 enrichment and nitrogen supply deserve particular attention. Spring OSR was grown in climate chambers simulating the seasonal increments of day length and temperature in South-Western Germany. Three levels of N fertilisation representing 75,150 and 225 kg ha-1 and two CO2 concentrations (380 and 550 μmol mol-1) were used to investigate changes in source-sink relationships, plant development and senescence, water use efficiency of the dry matter production (WUEprod.), allocation patterns to different fractions, growth, yield and seed oil contents. Seven harvests were performed between 72 and 142 days after sowing (DAS). Overall, plant performance in the chambers was comparable to the development under field conditions. While CO2 responses were small in the plants receiving lowest N-levels, several significant N × CO2 interactions were observed in the other treatments. Increasing the N availability resulted in longer flowering windows, which were furthermore extended at elevated CO2 concentrations. Nevertheless, significantly less biomass was allocated to reproductive structures under elevated CO2, while the vegetative C-storing organs continued to grow. At the final harvest shoot mass of the CO2 exposed plants had increased by 9, 8 and 15% in the low, medium and high N treatments. Root growth was increased even more by 17, 43 and 33%, respectively and WUEprod. increased by 23, 42 and 35%. At the same time, seed oil contents were significantly reduced by CO2 enrichment in the treatments with ample N supply. Obviously, under high N-supply, the CO2 fertilisation induced exaggerated growth of vegetative tissues at the expense of reproductive structures. The interruption of source-sink relationships stimulated the formation of side shoots and flowers (branching out). While direct effects of elevated CO2 on flowering can be excluded, we assume that the increased growth under high N and CO2 supply created nutrient imbalances which hence affected flowering and seed set. Nevertheless, the final seed macronutrient concentrations were slightly increased by elevated CO2, indicating that remobilisation of nutrients from the sources (leaves) to the sinks (seeds) remained effective. These findings were supported by the lower nitrogen concentrations in senescing leaves and probably increased N remobilisation to other plant parts under elevated concentrations of CO2. All the same, CO2 enrichment caused a decline in seed oil contents, which may translate into a reduced crop quality.
CC : 002A10H05
FD : Sénescence; Efficacité utilisation eau; Fertilisation azotée; Augmentation; Enrichissement chimique; Relation source puits; Floraison; Ramification; Teneur huile; Brassica napus var. oleifera; Dioxyde de carbone; Graine; Nutriment; Botanique; <<>>; Ecologie végétale
FG : Cruciferae; Dicotyledones; Angiospermae; Spermatophyta; Plante oléagineuse
ED : Senescence; Water use efficiency; Nitrogen fertilization; Increase; Chemical enrichment; Source sink relationship; Flowering; Branching; Oil content; Brassica napus var. oleifera; Carbon dioxide; Seeds; Nutrient; Botany; Plant ecology
EG : Cruciferae; Dicotyledones; Angiospermae; Spermatophyta; Oil plant (vegetal)
SD : Senescencia; Eficacia utilización agua; Fertilización nitrogenada; Aumentación; Enriquecimiento químico; Relación fuente sumidero; Floración; Ramificación; Contenido aceite; Brassica napus var. oleifera; Carbono dióxido; Semillas; Nutriente; Botánica; Ecología vegetal
LO : INIST-9462.354000192207150230
ID : 11-0321670

Links to Exploration step

Pascal:11-0321670

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Growth, senescence and water use efficiency of spring oilseed rape (Brassica napus L. cv. Mozart) grown in a factorial combination of nitrogen supply and elevated CO
<sub>2</sub>
</title>
<author>
<name sortKey="Franzaring, J" sort="Franzaring, J" uniqKey="Franzaring J" first="J." last="Franzaring">J. Franzaring</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Universität Hohenheim, Institut für Landschafts- und Pflanzenökologie (320), FG. Pflanzenökologie und Ökotoxikologie, Ökologiezentrum 2, August-von-Hartmann-Str. 3</s1>
<s2>70599 Stuttgart</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Weller, S" sort="Weller, S" uniqKey="Weller S" first="S." last="Weller">S. Weller</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Universität Hohenheim, Institut für Landschafts- und Pflanzenökologie (320), FG. Pflanzenökologie und Ökotoxikologie, Ökologiezentrum 2, August-von-Hartmann-Str. 3</s1>
<s2>70599 Stuttgart</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Schmid, I" sort="Schmid, I" uniqKey="Schmid I" first="I." last="Schmid">I. Schmid</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Universität Hohenheim, Institut für Landschafts- und Pflanzenökologie (320), FG. Pflanzenökologie und Ökotoxikologie, Ökologiezentrum 2, August-von-Hartmann-Str. 3</s1>
<s2>70599 Stuttgart</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fangmeier, A" sort="Fangmeier, A" uniqKey="Fangmeier A" first="A." last="Fangmeier">A. Fangmeier</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Universität Hohenheim, Institut für Landschafts- und Pflanzenökologie (320), FG. Pflanzenökologie und Ökotoxikologie, Ökologiezentrum 2, August-von-Hartmann-Str. 3</s1>
<s2>70599 Stuttgart</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0321670</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0321670 INIST</idno>
<idno type="RBID">Pascal:11-0321670</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000057</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Growth, senescence and water use efficiency of spring oilseed rape (Brassica napus L. cv. Mozart) grown in a factorial combination of nitrogen supply and elevated CO
<sub>2</sub>
</title>
<author>
<name sortKey="Franzaring, J" sort="Franzaring, J" uniqKey="Franzaring J" first="J." last="Franzaring">J. Franzaring</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Universität Hohenheim, Institut für Landschafts- und Pflanzenökologie (320), FG. Pflanzenökologie und Ökotoxikologie, Ökologiezentrum 2, August-von-Hartmann-Str. 3</s1>
<s2>70599 Stuttgart</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Weller, S" sort="Weller, S" uniqKey="Weller S" first="S." last="Weller">S. Weller</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Universität Hohenheim, Institut für Landschafts- und Pflanzenökologie (320), FG. Pflanzenökologie und Ökotoxikologie, Ökologiezentrum 2, August-von-Hartmann-Str. 3</s1>
<s2>70599 Stuttgart</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Schmid, I" sort="Schmid, I" uniqKey="Schmid I" first="I." last="Schmid">I. Schmid</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Universität Hohenheim, Institut für Landschafts- und Pflanzenökologie (320), FG. Pflanzenökologie und Ökotoxikologie, Ökologiezentrum 2, August-von-Hartmann-Str. 3</s1>
<s2>70599 Stuttgart</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fangmeier, A" sort="Fangmeier, A" uniqKey="Fangmeier A" first="A." last="Fangmeier">A. Fangmeier</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Universität Hohenheim, Institut für Landschafts- und Pflanzenökologie (320), FG. Pflanzenökologie und Ökotoxikologie, Ökologiezentrum 2, August-von-Hartmann-Str. 3</s1>
<s2>70599 Stuttgart</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Environmental and experimental botany</title>
<title level="j" type="abbreviated">Environ. exp. bot.</title>
<idno type="ISSN">0098-8472</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Environmental and experimental botany</title>
<title level="j" type="abbreviated">Environ. exp. bot.</title>
<idno type="ISSN">0098-8472</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Botany</term>
<term>Branching</term>
<term>Brassica napus var. oleifera</term>
<term>Carbon dioxide</term>
<term>Chemical enrichment</term>
<term>Flowering</term>
<term>Increase</term>
<term>Nitrogen fertilization</term>
<term>Nutrient</term>
<term>Oil content</term>
<term>Plant ecology</term>
<term>Seeds</term>
<term>Senescence</term>
<term>Source sink relationship</term>
<term>Water use efficiency</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Sénescence</term>
<term>Efficacité utilisation eau</term>
<term>Fertilisation azotée</term>
<term>Augmentation</term>
<term>Enrichissement chimique</term>
<term>Relation source puits</term>
<term>Floraison</term>
<term>Ramification</term>
<term>Teneur huile</term>
<term>Brassica napus var. oleifera</term>
<term>Dioxyde de carbone</term>
<term>Graine</term>
<term>Nutriment</term>
<term>Botanique</term>
<term><<>></term>
<term>Ecologie végétale</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Atmospheric CO
<sub>2</sub>
enrichment is expected to affect the resource use efficiency of C3 plants with respect to water, nutrients and light in an interactive manner. The responses of oilseed rape (OSR) to elevated CO
<sub>2</sub>
have not much been addressed. Since the crop has low nitrogen use efficiency, the interactive effects of CO
<sub>2</sub>
enrichment and nitrogen supply deserve particular attention. Spring OSR was grown in climate chambers simulating the seasonal increments of day length and temperature in South-Western Germany. Three levels of N fertilisation representing 75,150 and 225 kg ha
<sup>-1</sup>
and two CO
<sub>2</sub>
concentrations (380 and 550 μmol mol
<sup>-1</sup>
) were used to investigate changes in source-sink relationships, plant development and senescence, water use efficiency of the dry matter production (WUE
<sub>prod.</sub>
), allocation patterns to different fractions, growth, yield and seed oil contents. Seven harvests were performed between 72 and 142 days after sowing (DAS). Overall, plant performance in the chambers was comparable to the development under field conditions. While CO
<sub>2</sub>
responses were small in the plants receiving lowest N-levels, several significant N × CO
<sub>2</sub>
interactions were observed in the other treatments. Increasing the N availability resulted in longer flowering windows, which were furthermore extended at elevated CO
<sub>2</sub>
concentrations. Nevertheless, significantly less biomass was allocated to reproductive structures under elevated CO
<sub>2</sub>
, while the vegetative C-storing organs continued to grow. At the final harvest shoot mass of the CO
<sub>2</sub>
exposed plants had increased by 9, 8 and 15% in the low, medium and high N treatments. Root growth was increased even more by 17, 43 and 33%, respectively and WUE
<sub>prod</sub>
. increased by 23, 42 and 35%. At the same time, seed oil contents were significantly reduced by CO
<sub>2</sub>
enrichment in the treatments with ample N supply. Obviously, under high N-supply, the CO
<sub>2</sub>
fertilisation induced exaggerated growth of vegetative tissues at the expense of reproductive structures. The interruption of source-sink relationships stimulated the formation of side shoots and flowers (branching out). While direct effects of elevated CO
<sub>2</sub>
on flowering can be excluded, we assume that the increased growth under high N and CO
<sub>2</sub>
supply created nutrient imbalances which hence affected flowering and seed set. Nevertheless, the final seed macronutrient concentrations were slightly increased by elevated CO
<sub>2</sub>
, indicating that remobilisation of nutrients from the sources (leaves) to the sinks (seeds) remained effective. These findings were supported by the lower nitrogen concentrations in senescing leaves and probably increased N remobilisation to other plant parts under elevated concentrations of CO
<sub>2</sub>
. All the same, CO
<sub>2</sub>
enrichment caused a decline in seed oil contents, which may translate into a reduced crop quality.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0098-8472</s0>
</fA01>
<fA02 i1="01">
<s0>EEBODM</s0>
</fA02>
<fA03 i2="1">
<s0>Environ. exp. bot.</s0>
</fA03>
<fA05>
<s2>72</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Growth, senescence and water use efficiency of spring oilseed rape (Brassica napus L. cv. Mozart) grown in a factorial combination of nitrogen supply and elevated CO
<sub>2</sub>
</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>FRANZARING (J.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>WELLER (S.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SCHMID (I.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>FANGMEIER (A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Universität Hohenheim, Institut für Landschafts- und Pflanzenökologie (320), FG. Pflanzenökologie und Ökotoxikologie, Ökologiezentrum 2, August-von-Hartmann-Str. 3</s1>
<s2>70599 Stuttgart</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>284-296</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>9462</s2>
<s5>354000192207150230</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.3/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0321670</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>PR</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Environmental and experimental botany</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Atmospheric CO
<sub>2</sub>
enrichment is expected to affect the resource use efficiency of C3 plants with respect to water, nutrients and light in an interactive manner. The responses of oilseed rape (OSR) to elevated CO
<sub>2</sub>
have not much been addressed. Since the crop has low nitrogen use efficiency, the interactive effects of CO
<sub>2</sub>
enrichment and nitrogen supply deserve particular attention. Spring OSR was grown in climate chambers simulating the seasonal increments of day length and temperature in South-Western Germany. Three levels of N fertilisation representing 75,150 and 225 kg ha
<sup>-1</sup>
and two CO
<sub>2</sub>
concentrations (380 and 550 μmol mol
<sup>-1</sup>
) were used to investigate changes in source-sink relationships, plant development and senescence, water use efficiency of the dry matter production (WUE
<sub>prod.</sub>
), allocation patterns to different fractions, growth, yield and seed oil contents. Seven harvests were performed between 72 and 142 days after sowing (DAS). Overall, plant performance in the chambers was comparable to the development under field conditions. While CO
<sub>2</sub>
responses were small in the plants receiving lowest N-levels, several significant N × CO
<sub>2</sub>
interactions were observed in the other treatments. Increasing the N availability resulted in longer flowering windows, which were furthermore extended at elevated CO
<sub>2</sub>
concentrations. Nevertheless, significantly less biomass was allocated to reproductive structures under elevated CO
<sub>2</sub>
, while the vegetative C-storing organs continued to grow. At the final harvest shoot mass of the CO
<sub>2</sub>
exposed plants had increased by 9, 8 and 15% in the low, medium and high N treatments. Root growth was increased even more by 17, 43 and 33%, respectively and WUE
<sub>prod</sub>
. increased by 23, 42 and 35%. At the same time, seed oil contents were significantly reduced by CO
<sub>2</sub>
enrichment in the treatments with ample N supply. Obviously, under high N-supply, the CO
<sub>2</sub>
fertilisation induced exaggerated growth of vegetative tissues at the expense of reproductive structures. The interruption of source-sink relationships stimulated the formation of side shoots and flowers (branching out). While direct effects of elevated CO
<sub>2</sub>
on flowering can be excluded, we assume that the increased growth under high N and CO
<sub>2</sub>
supply created nutrient imbalances which hence affected flowering and seed set. Nevertheless, the final seed macronutrient concentrations were slightly increased by elevated CO
<sub>2</sub>
, indicating that remobilisation of nutrients from the sources (leaves) to the sinks (seeds) remained effective. These findings were supported by the lower nitrogen concentrations in senescing leaves and probably increased N remobilisation to other plant parts under elevated concentrations of CO
<sub>2</sub>
. All the same, CO
<sub>2</sub>
enrichment caused a decline in seed oil contents, which may translate into a reduced crop quality.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A10H05</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Sénescence</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Senescence</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Senescencia</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Efficacité utilisation eau</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Water use efficiency</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Eficacia utilización agua</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Fertilisation azotée</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Nitrogen fertilization</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Fertilización nitrogenada</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Augmentation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Increase</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Aumentación</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Enrichissement chimique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Chemical enrichment</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Enriquecimiento químico</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Relation source puits</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Source sink relationship</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Relación fuente sumidero</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Floraison</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Flowering</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Floración</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Ramification</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Branching</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Ramificación</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Teneur huile</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Oil content</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Contenido aceite</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Brassica napus var. oleifera</s0>
<s2>NS</s2>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Brassica napus var. oleifera</s0>
<s2>NS</s2>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Brassica napus var. oleifera</s0>
<s2>NS</s2>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Dioxyde de carbone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Carbon dioxide</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Carbono dióxido</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Graine</s0>
<s5>28</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Seeds</s0>
<s5>28</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Semillas</s0>
<s5>28</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Nutriment</s0>
<s5>29</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Nutrient</s0>
<s5>29</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Nutriente</s0>
<s5>29</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Botanique</s0>
<s5>30</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Botany</s0>
<s5>30</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Botánica</s0>
<s5>30</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0><<>></s0>
<s4>INC</s4>
<s5>68</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Ecologie végétale</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Plant ecology</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Ecología vegetal</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Cruciferae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Cruciferae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Cruciferae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Plante oléagineuse</s0>
<s5>31</s5>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>Oil plant (vegetal)</s0>
<s5>31</s5>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Planta oleaginosa</s0>
<s5>31</s5>
</fC07>
<fN21>
<s1>220</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 11-0321670 INIST</NO>
<ET>Growth, senescence and water use efficiency of spring oilseed rape (Brassica napus L. cv. Mozart) grown in a factorial combination of nitrogen supply and elevated CO
<sub>2</sub>
</ET>
<AU>FRANZARING (J.); WELLER (S.); SCHMID (I.); FANGMEIER (A.)</AU>
<AF>Universität Hohenheim, Institut für Landschafts- und Pflanzenökologie (320), FG. Pflanzenökologie und Ökotoxikologie, Ökologiezentrum 2, August-von-Hartmann-Str. 3/70599 Stuttgart/Allemagne (1 aut., 2 aut., 3 aut., 4 aut.)</AF>
<DT>Publication en série; Papier de recherche; Niveau analytique</DT>
<SO>Environmental and experimental botany; ISSN 0098-8472; Coden EEBODM; Pays-Bas; Da. 2011; Vol. 72; No. 2; Pp. 284-296; Bibl. 1 p.3/4</SO>
<LA>Anglais</LA>
<EA>Atmospheric CO
<sub>2</sub>
enrichment is expected to affect the resource use efficiency of C3 plants with respect to water, nutrients and light in an interactive manner. The responses of oilseed rape (OSR) to elevated CO
<sub>2</sub>
have not much been addressed. Since the crop has low nitrogen use efficiency, the interactive effects of CO
<sub>2</sub>
enrichment and nitrogen supply deserve particular attention. Spring OSR was grown in climate chambers simulating the seasonal increments of day length and temperature in South-Western Germany. Three levels of N fertilisation representing 75,150 and 225 kg ha
<sup>-1</sup>
and two CO
<sub>2</sub>
concentrations (380 and 550 μmol mol
<sup>-1</sup>
) were used to investigate changes in source-sink relationships, plant development and senescence, water use efficiency of the dry matter production (WUE
<sub>prod.</sub>
), allocation patterns to different fractions, growth, yield and seed oil contents. Seven harvests were performed between 72 and 142 days after sowing (DAS). Overall, plant performance in the chambers was comparable to the development under field conditions. While CO
<sub>2</sub>
responses were small in the plants receiving lowest N-levels, several significant N × CO
<sub>2</sub>
interactions were observed in the other treatments. Increasing the N availability resulted in longer flowering windows, which were furthermore extended at elevated CO
<sub>2</sub>
concentrations. Nevertheless, significantly less biomass was allocated to reproductive structures under elevated CO
<sub>2</sub>
, while the vegetative C-storing organs continued to grow. At the final harvest shoot mass of the CO
<sub>2</sub>
exposed plants had increased by 9, 8 and 15% in the low, medium and high N treatments. Root growth was increased even more by 17, 43 and 33%, respectively and WUE
<sub>prod</sub>
. increased by 23, 42 and 35%. At the same time, seed oil contents were significantly reduced by CO
<sub>2</sub>
enrichment in the treatments with ample N supply. Obviously, under high N-supply, the CO
<sub>2</sub>
fertilisation induced exaggerated growth of vegetative tissues at the expense of reproductive structures. The interruption of source-sink relationships stimulated the formation of side shoots and flowers (branching out). While direct effects of elevated CO
<sub>2</sub>
on flowering can be excluded, we assume that the increased growth under high N and CO
<sub>2</sub>
supply created nutrient imbalances which hence affected flowering and seed set. Nevertheless, the final seed macronutrient concentrations were slightly increased by elevated CO
<sub>2</sub>
, indicating that remobilisation of nutrients from the sources (leaves) to the sinks (seeds) remained effective. These findings were supported by the lower nitrogen concentrations in senescing leaves and probably increased N remobilisation to other plant parts under elevated concentrations of CO
<sub>2</sub>
. All the same, CO
<sub>2</sub>
enrichment caused a decline in seed oil contents, which may translate into a reduced crop quality.</EA>
<CC>002A10H05</CC>
<FD>Sénescence; Efficacité utilisation eau; Fertilisation azotée; Augmentation; Enrichissement chimique; Relation source puits; Floraison; Ramification; Teneur huile; Brassica napus var. oleifera; Dioxyde de carbone; Graine; Nutriment; Botanique; <<>>; Ecologie végétale</FD>
<FG>Cruciferae; Dicotyledones; Angiospermae; Spermatophyta; Plante oléagineuse</FG>
<ED>Senescence; Water use efficiency; Nitrogen fertilization; Increase; Chemical enrichment; Source sink relationship; Flowering; Branching; Oil content; Brassica napus var. oleifera; Carbon dioxide; Seeds; Nutrient; Botany; Plant ecology</ED>
<EG>Cruciferae; Dicotyledones; Angiospermae; Spermatophyta; Oil plant (vegetal)</EG>
<SD>Senescencia; Eficacia utilización agua; Fertilización nitrogenada; Aumentación; Enriquecimiento químico; Relación fuente sumidero; Floración; Ramificación; Contenido aceite; Brassica napus var. oleifera; Carbono dióxido; Semillas; Nutriente; Botánica; Ecología vegetal</SD>
<LO>INIST-9462.354000192207150230</LO>
<ID>11-0321670</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000057 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000057 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:11-0321670
   |texte=   Growth, senescence and water use efficiency of spring oilseed rape (Brassica napus L. cv. Mozart) grown in a factorial combination of nitrogen supply and elevated CO2
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023